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Abstract

Point cloud completion is a significant topic in computer
vision. Many deep-learning-based methods have been pro-
posed to solve this problem directly based on an encoder-
decoder structure. However, these architectures heavily rely
on the representation ability of the encoded global feature.
Some researchers try to leverage Meso-Skeleton to explic-
itly learn the global structure of objects. In this project we
propose two architectures respectively backboned by PU-
Net and PF-Net to study the effect of Meso-Skeleton in im-
proving point cloud completion. Experiments show that a
high-quality skeleton largely boosts the shape completion
performance in both CD and EMD scores.

1. Introduction
Point cloud can capture rich 3D shape information, e.g.

3D point location, RGB/intensity and semantics. The most
common method to obtain point cloud data is to use a 3D
laser scanner. However, due to the limitation of view angles
and occlusions of devices, the collected raw point sets are
usually incomplete. Hence, a 3D point cloud completion
method is necessary for the downstream applications.

Many deep learning approaches have been proposed to
solve problems in point cloud. PointNet [1] is an inspir-
ing and pioneering network, which proves that deep learn-
ing model can directly operate on point set data for several
applications. Based on that, Charles et al. [2] propose an
improved architecture PointNet++ which applies hierarchi-
cal feature learning to obtain both local and global features
and can achieve better results. Generally speaking, most
existing point cloud completion methods try to recover ob-
jects by an encoder-decoder framework [3]. However, Nie
et al. [4] propose SK-PCN to leverage a novel intermediate
modality Meso-Skeleton to better capture the global fea-
tures of original point cloud which outperforms the auto-

encoder-based method. This method inspires us to leverage
Meso-Skeleton learning to complete partial point cloud and
study the role that skeleton plays in this task.

2. Methodology
We propose two different neural network architectures

based on PU-Net and PF-Net to study the impact of Meso-
skeleton learning in 3D point cloud completion.

2.1. PU-Net

PU-Net [5] inherits the hierarchical feature learning in-
troduced by PointNet++ [2]. This model consists of three
modules: point feature embedding, feature expansion and
coordinate reconstruction. In the first module, the input
point cloud is transformed to multi-level feature maps with
different resolutions and then aggregated to one feature
map. After that, the feature map is expanded by using sev-
eral 1×1 convolution layers and fed into a MLP to generate
the final 3D coordinate. Figure 1 shows the structure of PU-
Net.

Figure 1. Brief Structure of PU-Net

2.2. PF-Net

PF-Net [6] is more like a traditional encoder-decoder-
based framework. In the encoder part, a novel feature ex-
tractor CMLP transforms three input point clouds with dif-
ferent resolutions to three latent factors. Then, these latent
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Figure 2. Brief Structure of PF-Net

factors are concatenated and fed into a MLP to generate the
final feature vector. In the decoder part, three different fea-
ture layers are obtained by passing feature vectors/layers
through different full-connected layers. Each feature layer
is responsible for generating point cloud under one resolu-
tion. By combining these point clouds we can obtain our
final prediction. Detailed workflow can be seen in Figure 2.

2.3. Point2Skeleton

Point2Skeleton [7] is the model we implement in this
project to generate Meso-Skeleton for further study.

2.4. Proposed architecture

To further study the effect of Meso-Skeleton in 3D point
cloud completion, we propose the following architecture.
Our model consists of skeleton learning module and dis-
placement learning module, and each module consists of a
PU-Net/PF-Net framework. Partial point cloud is inputted
into skeleton learning module supervised by the full point
cloud skeleton to generate a skeleton with the same num-
ber of input points, which can learn the global feature of
the complete point cloud. The same partial point cloud is
inputted to the displacement learning module to predict the
displacement of each point from the skeleton to the com-
plete point cloud. Then we add the predictions of these two
modules together to obtain the final result. Figure 3 demon-
strates the architecture of our proposed model.

Figure 3. Proposed Architecture

2.5. Loss Function

The loss function of our model consists of three
parts: Chamfer Distance loss for skeleton prediction, Earth
Movers Distance loss for final prediction and Repulsion
loss.
Chamfer Distance for Skeleton Prediction: Due to the
limitation of device and the capability of Point2Skeleton,
we can only obtain skeleton with less than 1200 points,
which results in the inequality between generated skeleton
points and ground truth skeleton, therefore we select Cham-
fer Distance to supervise skeleton generation:

LCD =

∑
xmin y||x− y||2

|P |
+

∑
yminx||y − x||2

|Q|
(1)

Earth Movers Distance loss for final prediction: Earth
Movers Distance is a classic approach to evaluate the simi-
larity between two point clouds. We choose EMD to super-
vise our final prediction:

LEMD = min
φ:P→Q

∑
x∈P
||x− φ(x)||2 (2)

Repulsion Loss for final prediction: Inspired by PU-Net,
we apply repulsion loss [5] for the final prediction to im-
prove the uniformity of distribution:

LRepulsion =

N∑
i=0

∑
i′(i)

η(||xi′ − xi||2)ω(||xi′ − xi||2) (3)

Altogether, we build an end-to-end model by minimizing
the following joint loss function.

L= αLCD + βLEMD + γLRepulsion (4)

where α,β and γ balance each sub-loss.

3. Experiment
3.1. Dataset

We use the method from PF-Net [6] to directly dig points
on the original complete data from ShapeNet [8] to obtain
the partial point cloud. We randomly select a point from the
normalized complete point cloud and delete the points in a
sphere with a certain radius centered on this point. Then
we use iterative farthest point sampling (IFPS) to make the
number of complete points and partial points the same as
2048. We randomly select 1600 samples and 400 samples
in the chair category as training set and test set. In order
to explore the influence of the number of skeleton points
on the network, we input the complete point cloud into
Point2Skeleton, and obtain four groups of different number
of skeleton points: 100, 200, 400, and 1200.
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Figure 4. We compared the results of PU-Net-Basis and PF-Net-
Basis, where ’ab.’ represents the ablation study of skeleton.

3.2. Implementation details

We train the dataset with different number of skeletons
on the PU-Net-Basis and PF-Net-Basis network. In order to
explore the influence of skeleton on the network, we set dif-
ferent ratios of full point loss and skeleton loss in joint loss
optimization. For PF-Net-Basis, the joint loss also includes
full point loss and skeleton loss under different scales, so
the weights of different losses in the two networks are not
exactly the same.

The networks are based on Pytorch. We train 300 epochs
using the Adam algorithm with a learning rate of 0.0005,
and the training time is about 8 hours.

ratio 0 0.1 0.3 0.5 0.7 0.9
loss 2.950 2.554 2.920 3.201 3.225 3.598

Table 1. PU-Net-Basis: Results on different skeleton weights. We
use EMD loss and show the loss under different weight in joint
optimization, where ”0” represents the ablation study for not using
skeleton in completion. The results are multiplied by 1000 for
readability and comparison convenience.

ratio 0 0.3 0.5 0.6 1 2
loss 1.685 1.629 1.636 1.640 1.691 1.742

Table 2. PF-Net-Basis: Results on different skeleton weights. The
EMD loss is multiplied by 1000.

4. Results
The overall comparison result of PU-Net-Basis and PF-

Net-Basis is shown in the figure 4. It can be seen that the
result of PF-Net-Basis is better than PU-Net-Basis.

4.1. Different skeleton weights

For PU-Net-Basis, We ablate the ratio of skeleton loss
in full point loss to 0.1, 0.3, 0.5, 0.7, 0.9 respectively. For
PF-Net-Basis, we set to 0, 0.3, 0.5, 0.6, 1 and 2. The quan-
titative results are shown in the table 1 and 2. The quantita-
tive results are shown in figure 5 and 8. It can be seen full

Point number 100 200 400 1200
PU-Net-Basis
full point loss 2.554 2.472 2.684 3.236

PF-Net-Basis
full point loss 1.629 1.603 1.650 1.655

PU-Net-Basis
skeleton loss 0.803 0.756 0.890 1.260

PF-Net-Basis
skeleton loss 0.325 0.210 0.364 0.388

Table 3. Results on different skeleton point numbers. CD loss is
used to evaluate the quality of the predicted skeleton, which is
multiplied by 100 for the convenience of comparison.

Figure 5. PU-Net-Basis experiment on different weights. The
number on the sample indicates the respective weight in joint loss.
There is more noise in larger weight cases.

Figure 6. PU-Net-Basis experiment on different number of skele-
ton. The number on the sample indicates the number of skeleton
used. Skeleton with 200 points achieves best results.

point loss decreases as the proportion of skeleton loss de-
creases. The explanation is that, first, in actual experiments,
the original magnitude of the two losses is different. In or-
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der to balance these two in joint optimization, we increase
the weight of full point loss. Secondly, it is obvious that the
importance of full point loss in optimization increases as its
weight increases, and the smaller the final loss will be.

For PU-Net-Basis, we use the best ratio: 0.1 to carry out
the next step of the comparative test of different skeletons.
For PF-Net-Basis, we choose 0.6 to take into account better
skeleton loss and full point loss at the same time.

4.2. Different number of skeleton points

We explore the influence of different number of skeleton
points on the final result. The quantitative result is shown
in table 3 and quantitative results are in figure 6 and 9. It
can be seen that the result of 100 and 200 cases are bet-
ter than 400 and 1200 cases. This is contrary to our intu-
ition that larger number of skeletons can represent richer
features and improve the result. We think this may be re-
lated to the quality of skeleton generation. The quality of
the skeleton generated by Point2Skeleton in the case of a
small number of output skeletons is better than that of a
large output number. As shown in figure 7, in the case of
1200 skeletons, we can easily observe that a large number
of points gather together, which has a negative effect on the
subsequent displacement learning. Skeleton with 200 points
combines the advantages of good quality of skeleton ground
truth and appropriate skeleton number at the same time, and
the more evenly distributed skeletons effectively guide the
optimization of the entire network. It is also expected that
the predicted full point loss is synchronized with the change
of skeleton loss, which can be seen by comparing the loss.

Figure 7. We show the comparison result of different number of
skeleton points generated by Point2Skeleton. The cases of 400
and 1200 have more noise and clustering.

4.3. Analysis

In the ablation study for skeleton, we remove the skele-
ton from the dataset and input our network with only the
partial point. It can be seen in table 1 and 2 that the full point
loss is acceptable, but the effect is relatively poor, which
proves that a high-quality skeleton can effectively improve
the prediction results.

Failure cases are also analysed. There are some complex
features which skeleton cannot effectively extract and rep-
resent. For example, samples which have features that vary

with thickness, and skeleton tends to ignore these features
and extract the sample into a plane. Due to the inherent lim-
itations of skeleton and the limited application range of the
skeleton generation module we use, the current model can
only predict simple samples well, which can be improved
in future work.

Figure 8. PF-Net-Basis experiment on different weights. The num-
ber above the sample represents the respective weight, and ’ab.’
represents ablation study for not using skeleton.

Figure 9. PF-Net-Basis experiment on different number of skele-
ton. The number above the sample represents the respective used
skeleton, and ’ab.’ represents ablation study. In the 100, 400 and
1200 cases, there is noise on the back of the chair.

5. Conclusion

Skeleton can effectively extract the feature of point
cloud, which brings new idea for solving point cloud re-
lated problem. We hope to use skeleton as an intermediate
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medium to provide effective guidance for point cloud com-
pletion. Based on the basic framework of PU-Net and PF-
Net, we build a point cloud completion model. The result
shows that compared with direct prediction without skele-
ton, the features provided by high-quality skeleton can ef-
fectively improve the quality of the predicted point cloud.
Our work can be further improved by improving the quality
and applicability of skeleton generation, and adding more
rigorous skeleton generation quality evaluation.
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