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Abstract

Multi-view stereopsis is a significant topic in computer
vision. From an input monocular RGB video and camera
parameters, we reconstruct the surface geometry directly
by regressing a sparse TSDF volume. A Swin-Transformer
backbone is used to extract the most informative features
for downstream fusion tasks. Features of keyframes are
back-projected to 3D space, constructing a local window
for representing the local geometry. TSDF values are re-
gressed using sparse convolution in a coarse-to-fine man-
ner to ignore free space and increase computational effi-
ciency. A transformer-based fusion module makes the local
reconstruction to be globally consistent with the previously
reconstructed windows. Our method is able to learn the lo-
cal smoothness and global shape prior of 3D surfaces at
interactive rates. Experiments on ScanNet show that the re-
construction quality and efficiency of our method are com-
parable to current state-of-the-art methods.

1. Introduction
Multi-view stereopsis (MVS) is a classic computer vi-

sion problem which aims to reconstruct a 3D scene given
a set of images with corresponding camera parameters.
This technology is one of the key components of au-
tonomous driving, augmented reality and target motion
analysis. Many pioneering works have been proposed in
this field and one common method is to estimate the depth
maps and fuse them into a Truncated Signed Distance Func-
tion (TSDF) volume from which the reconstructed mesh can
be generated with Marching Cubes algorithm [1].

However, It is difficult for depth based method to con-
sider the global priority even when many scenes overlap,
resulting in noise artifacts and unsmooth local reconstruc-
tion. Recently, methods for directly predicting 3D geome-
tries from images have made great progress. For instance,
using a transformer network, TransformerFusion [2] fuses
the observations into a volumetric feature grid representing
the scene, which is later decoded to predict surface occu-
pancy.

Inspired by these works and the great development
of transformer application in computer vision, especially
Swin-Transformer [3], we propose a novel framework in-
tegrated with transformer for real-time MVS reconstruc-
tion. Basically, features extracted by Swin-Transformer
backbone are back projected to construct a feature volume
as space representation. Sparse convolution and coarse to
fine manner is used to refine features spatially. 3D recon-
struction is preformed incrementally and a transformer fu-
sion module is leveraged to guide the local reconstruction,
resulting accurate reconstruction in real time.

2. Related Work
2.1. Depth Estimation

The boom in deep learning has brought great progress in
learning-based depth estimation models. MVDepthNet [4]
uses 2D CNN to process a cost volume constructed from
multi-view image features and predicts depth in an encoder-
decoder manner. DPSNet [5] leverages 3D CNN to process
the concatenated features for the generation of cost volume.
The estimated depth can be later used for RGB-D recon-
struction. Unlike depth based method, SurfaceNet [6] back-
projects a series of images to 3D space, directly uses 3D
CNN to process them and obtains the 3D reconstruction re-
sults.

2.2. Transformer

Designed for sequence modeling, Transformer [7] has
achieved tremendous success in NLP domain, which leads
researcher to dig its potential on computer vision. Liu Z
et.al [3] proposes a noval architecture Swin-Transformer,
which can effectively learn the correlation between long-
term features and can be applied as a general-purpose back-
bone for downstream tasks. This innovative architecture
presents the huge potential of Swin-Transformer-based vi-
sion model.

3. Proposed Method
Given a set of N RGB images Ii of a scene with cor-

responding camera intrinsic parameters Ki and extrinsic
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poses Pi, our goal is to reconstruct the scene geometry in
real-time by predicting a global TSDF volume as the repre-
sentation of this scene. Figure 1 shows the basic architec-
ture of our proposed model.

3.1. View selection and window construction

Considering all frames as input to our model is very com-
putationally challenging with large-scale scenes, so we need
to sample all incoming frames, which is based on sufficient
rotation Rmax and translation Tmax between the cameras
of the two frames. Every 10 incoming keyframes Ikey con-
stitute a window. Within each window, we construct a cube
containing the view frustum of all keyframes within a max
depth range. In the early training, we will focus on the re-
construction of this local window.

3.2. Feature extraction and volume construction

We implement Swin-Transformer S as backbone for the
multi-level feature extraction. The input image is first di-
vided into small patches without overlapping, and then fed
into the linear embedding layer for downsampling. The
main Swin-Transformer block will implement the attention
mechanism in the image for information exchange. In or-
der to obtain features with different number of channels and
size, we use Nl different Swin-Transformer blocks.

S : Ikey 7→ (Φ1
w, ...,Φ

Nl
w )

Following other volumetric methods, after using image
backbone to extract features, we construct the feature vol-
ume by back-projecting the features of keyframes along
each ray into the feature volume using camera parameters
Ki and Pi . Features of different keyframes are aggregated
by average operation.

B : (Φl
w,Ki,Pi) 7→ F l

w

3.3. Coarse to fine TSDF reconstruction

Given feature volume, we predict the TSDF and occu-
pancy probability in each voxel in a coarse to fine manner.
After combining features from last level, sparse 3D convo-
lution C proposed in [8] is used to refine features spatially
and also improve computation efficiency.

C : (F l−1
w , F l

w) 7→ F̃ l
w

At each level, the global feature volume F l
g is built incre-

mentally by a transformer module T that updates F̄ l
w

T : (F l
g, F̃

l
w) 7→ F̄ l

w

The TSDF value and occupancy probability is predicted
by two MLPM and features in occupied voxel will be up-
sampled and propagated to next level. With this coarse to

fine manner, we can focus on the area near the surface and
ignore the free space.

M : F̄ l
w 7→ (TSDF ∈ [−1, 1], o ∈ [0, 1])

3.4. Local window fusion with attention-based fea-
ture propagation

The transformer module is used to fuse local state F̃ l
w

and hidden state F l
g and avoid equal-weight treatment of

each individual frame that may contain less useful informa-
tion. Specifically, hidden state F l

g is extracted in the same
window volume as local state F̃ l

w and then both of them are
fed into the fusion module. The predicted features F̄ l

w are
replaced in original position. Given that the computation of
the commonly used scaled dot product attention in [7] of
long sequences is very expensive, we design different mod-
ules and compare them in following experiments. First, we
use a simplified attention mechanism in [9]. Basically, it
shares the same idea as scaled dot product attention: com-
pute the similarity of two inputs, use softmax to get atten-
tion and compute context vector and final update.

e = tanh(Linear[F̃ l
w, F

l
g])

atten = softmax(Linear(e))

F̄ l
w = tanh(Linear[F̃ l

w, atten� F l
g])

Second, we design a transformer block following [7], For
simplicity, the transformer block consists of a multi head
attention with 4 attention heads using above described at-
tention and a feed forward layer. Both multi head attention
and feed forward layer contain ReLU activation, residual
connection and layer norm.

Third, in order to apply scaled dot product attention, we
also design a UNet attention block. We apply two layers of
Conv3d and ConvTranspose3d to voxels to achieve down-
sampling and upsampling respectively. At the bottom, we
apply a scaled dot product attention.

F̄ l
w = softmax(

F̃ l
wF

l
g
T

√
dk

)F l
g

3.5. Loss function

There are two outputs in our network: occupancy prob-
ability and TSDF value in each voxel. For occupancy loss,
we use Weighted Binary Cross Entropy Loss considering
that most of the voxels in the space will be empty. For TSDF
loss, we implement the logarithm mean absolute error fol-
lowing NeuralRecon [10].

3.6. Implemntation details

We perform the experiments on ScanNet(V2) [11] and
implement our method in pytorch and torchsparse library.
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Figure 1. Proposed Architecture

For local window we set the voxel dimension 64 ∗ 64 ∗ 64
the voxel size 0.04m. Rmax and Tmax are set to be 0.1 and
0.15◦ respectively, so the entire training set of ScanNet is
divided into 22650 local windows. Due to the limit of our
hardware, we select 10000 windows for training, 2000 win-
dows for validatoin and 2000 windows for testing. Training
takes about one day using an Nvidia RTX 2080 GPU.

4. Experiments

4.1. Experiment Design

We evaluate the point-to-point errors between ground
truth mesh and predicted mesh and compute precision and
recall by calculating the ratio of point-to-point matches
within small distances [2]. And we consider F-score as the
most suitable metrics since both the accuracy and complete-
ness of the reconstruction are considered.

We also compare our approach with state-of-the-art
methods. Due to time constraints, we compare with our
closest approach NeuralRecon and Atlas, as these meth-
ods build volumetric representation and predict 3D geom-
etry directly. We retrain these two models on our dataset
and use the same configurations. To compare efficiency, we
also evaluate the time each method takes to reconstruct the
scene, which is calculated as the time spent to reconstruct
each scene divided by the number of frames in that scene.

4.2. Backbone Selection

To study the performance of Swin-Transformer as back-
bone, we first conduct a series of experiments under
1000/200, 2000/500, 4000/1000 and 8000/1600 train-
ing/validation windows for backbone selection. In order to
eliminate the impact of other factors, we don’t add fusion
module to our network. Therefore, the results for compar-
ison is between windows. We compare Swin-Transformer
with pre-trained MnasNet [12]. We also conduct an ablation
study, in which we back-project color directly.

Backbone 1000 2000 4000 8000
Non-Backbone 3.11 2.61 2.44 2.13
Pretrain-MnasNet 1.97 1.92 1.88 1.75
Swin-Transformer 2.11 1.98 1.84 1.67

Table 1. Backbone Selection: Results on different training win-
dows. The value in this table represents the corresponding valida-
tion loss

Backbone Precision Recall F-score
Non-Backbone 0.19 0.65 0.29
Pretraind-MnasNet 0.43 0.59 0.49
Swin-Transformer 0.45 0.60 0.51

Table 2. Backbone Selection: Final evaluation of different back-
bones

As shown in the Table 1, there is a huge gap between the
validation loss of direct-projection and feature-projection,
verifying the effectiveness of a feature extraction pro-
cess. Comparing CNN backbone with Swin-Transformer,
the generalization of Swin-Transformer based model has a
steady, significant improvement, surpassing CNN backbone
with increasing dataset size.

Finally, we evaluate the quality of generated mesh in
the 8000 windows case. The result can be seen from
Table 2. The inbalance of recall and precision in Non-
Backbone case is probably because that the model just tries
to over-complete reconstructions with noisy surface. This
imbalance doesn’t occur on the two backbone case, where
the Swin-Transformer outperforms Pretrain-Mnasnet on all
metrics.

4.3. Fusion Modules

We use three different attention mechanisms as fusion
modules and compare their performance qualitatively and
quantitatively. It can be seen from Table 3 and top row in
Figure 2 that the performance of the most complex UNet at-
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Method Precision Recall F-score Runtime(ms)
AttentionLayer 0.45 0.50 0.48 40
Transformer 0.47 0.62 0.53 47
UNet Attention 0.43 0.41 0.42 61

Table 3. Comparsion between different fusion modules

tention block is the worst. To analyze the reason, it’s maybe
because valuable information between two long sequences
is lost after sampling, and complex model also increases
the difficulty of training. The transformer uses multi head
attention, and different attention heads focus on different as-
pects of the sequence, which achieves the best overall per-
formance. In terms of runtime, single-layer attention and
transformer are faster and can basically achieve real-time
reconstruction, while the complex UNet attention block is
the slowest. Qualitatively, transformer and attention linear
achieve our expectation of combining the surrounding con-
text, the reconstruction is smooth and consistent, while the
UNet attention reconstruction is rough.

Figure 2. Comparison of different fusion methods

4.4. Overall Performance

From the quantitative and qualitative comparison results
Table 4 and bottom row in Figure 2, our method has sim-
ilar performance to NeuralRecon and even surpasses it in
some scenes, but lower than atlas. As an offline method,
Atlas provides very smooth reconstructions, and even over-
smoothed geometries, resulting in inaccurate reconstruc-
tion, like the circled region in respective figure in Figure
2. Our method and NeuralRecon have generally good re-
construction quality with much higher speed compared to
Atlas.

4.5. Ablation studies and failure cases

To verify the effectiveness of our transformer fusion
module, we also do ablation experiments. In the first ex-
periment, we completely remove the fusion module, that is,

Method Precision Recall F-score Runtime(ms)
Atlas 0.49 0.71 0.58 280
NeuralRecon 0.57 0.52 0.54 38
Ours 0.47 0.62 0.53 47

Table 4. Comparsion with Atlas and NeuralRecon

Method Precision Recall F-score
w/o fusion module 0.39 0.54 0.45
w/o transformer 0.45 0.51 0.47
Ours 0.47 0.62 0.53

Table 5. Ablation studies

after reconstructing each local window, the incoming win-
dow is directly substituted in the corresponding location. In
the second experiment, we use a simple linear layer for in-
formation exchange. From the middle row in Figure 2 and
Table 5, we can see the performance of both are worse than
our transformer module, especially that the direct substitute
method results are rough, which reflects the ability of our
transformer module to consider the surrounding conditions
and context.

As shown in Figure 3, in complex and occluded scenes,
our reconstruction details are not enough, such as desks,
seats, windows, which can be left for future exploration.

Figure 3. Failure cases

5. Conclusion
In this project, we present an end-to-end MVS method

for real-time 3D reconstruction. We leverage the prevalent
transformer on two parts of our model. The key idea is to
jointly reconstruct and fuse sparse TSDF volumes for each
window incrementally by 3D sparse convolutions and trans-
former fusion module. Experiments show the positive ef-
fectiveness of Swin-Transformer feature extraction module
and Transformer fusion module. The overall performance
of our model ties NeuralRecon. For further improvement
for our model, using the whole ScanNet dataset, deeper
Swin-Transformer architecture are both promising.
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