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Abstract—This work explores the possibility of using UAVs in
avalanche rescue. We deploy a UAV equipped with an avalanche
beacon in a simulation environment. Four different algorithms
are proposed for the search of victims in avalanche scenario,
and methods’ performances are compared through a series of
experiments. The conclusion demonstrates the high efficiency,
high accuracy and high robustness of victim rescue using drones,
which has important implications for the practical application of
UAVs.

Index Terms—Avalanche Rescue, Triangulation, Iterative local
search, Drone path planning

I. INTRODUCTION

Sport activities such as skiing, snowboarding or hiking in
winter are very popular [1] [2]. A potential danger that winter
sportsmen are confronted with is avalanches, and they pose a
great threat since they happen most of the time in unguarded,
unwatched and less accessible areas and the process of locating
avalanche victims takes a long time. Moreover, the victim
survivability drops below 80% after only 10 min of being
buried according to an avalanche survivability survey [3].
Hence, it is very important to locate avalanche victims fast
and accurately.

An area hit by an avalanche is difficult to access and
poses sometimes additional danger to the rescue team. But
drones integrated with automatic devices are fast and agile
which makes them a perfect rescue agent in avalanche sce-
narios. They are often used to locate the victim stuck in the
avalanche autonomously and quickly. Many previous literature
and projects [4] [5] [6] have demonstrated the feasibility of
using drones in rescues.

In this work we address the rescue problem of victims in
an avalanche scenario. We mainly focus on how to locate
victims quickly and accurately. Further, we conduct our work
in a simulation environment and deploy a drone with a sensor
to locate avalanche victims. In Section II, we describe our
simulated avalanche scenario and the problem addressed in this
work. Following, in Section III we discuss the specification
of the sensor model which receives the emitted signals by

avalanche victims. Search methods to cover the avalanche area
and locate the victims are addressed in Section IV. In section V
we introduce our trajectory generation method and controller.
The experiments and results are presented in VI. Finally, in
Section VII we will summarize the work and give an outlook
for perspective research.

II. PROBLEM DESCRIPTION

The avalanche scene is simplified to a slope with length
and width of several hundred meters with an angle θ = 7◦.
Victims are distributed on the slope and the drone flies at a
fixed height h = 5m over the slope. The drone is a quadrotor
unmanned aerial vehicle (UAV) and its dynamics are similar
to that formulated by Taeyoung Lee et al. in [7]. It carries
a simulated avalanche beacon sensor to receive the victim’s
signal. It should cover the entire avalanche area with least time,
accurately locate the victim, and fly to the victim afterwards
to show that the localization is successful. We stipulate that
the rescue must be within 15 minutes to improve the survival
probability of the victim. For simplicity, we do not consider
external environmental factors such as temperature, altitude,
and wind, nor do we consider factors such as drone battery
capacity and weight.

III. SENSOR MODEL

Avalanche transceivers are common devices employed in
mountain activities. In transmission mode, they emit a low
pulsed radio signal at frequency f = 457Hz. Once commu-
tated into the receiving mode, they work as radio direction
finding equipments reconstructing the direction and the dis-
tance of the source transceiver, to search signals coming from
other transceivers.

In this work, we assume that the sensor can only give
the signal’s intensity which is inversely proportional to the
distance. Except the method of IV-B3, we assume that the
sensor can only receive the intensity signal. For IV-B3, the
sensor can also receive the direction signal. The transmission
range of different transceivers varies from 20m to 70m. and in



this work, we set the working range r = 20m, so the observed
intensity of the signal emitted by a victim is computed by

īt =
r

distv
(1)

where distv is the ground truth distance to a victim.

A. Noise

We assume that the intensity at timestamp t is noisy and
defined as follows

it = īt + εt (2)

where εt is the noise term that follows an exponential
distribution scaled by uniform distribution

εt ∼ U([0, 1]) · λe−λīt (3)

Exponential distribution of the noise comes from the be-
haviour of sensors in the real world. If the drone flies away
from a victim, the intensity decreases and the noise increases.
In contrast, approaching a victim makes the intensity increase
and the noise decrease. Moreover, the multiplication with an
uniform distribution U([0, 1]) in Equation (3) introduces a
randomness in the noise. Furthermore, we set λ = 1.

B. Direction Finding

In IV-B3 we introduce an approach that relies on the
magnitude of the intensity in each direction. Such a sensor
model can be interpreted as an antenna that points in positive
and negative x, y and z direction (see Figure 6 in Appendix
B). In each direction the sensor measures a intensity between
[−1, 1].

We reach this by computing

d̂t =
~dt

‖~dt‖+ c
(4)

with c as a constant and ~dt = ~vt−~xt. Here, xt is the current
position of the drone and vt is the victim position.

IV. SEARCH METHODS

Due to the limited working range of the transceiver, we have
to get close enough to the victim for precise positioning. So
our search is divided into global search and local search.

A. Global Search

For global search, to cover the search area as quickly as
possible, we use the most common method used by rescue
teams: in a simplified scenario as Figure 1, the drone flies
in the normal direction of the avalanche, and after reaching
the end point, the drone turns 90◦, after flying a distance of
grid length wg in the parallel direction of the avalanche, turns
90◦ again and flies in the normal direction of the avalanche.
The grid length wg depends on specific local search method.
The drone should repeat this procedure to cover the entire
avalanche area.

Fig. 1. Global Search

B. Local Search

We try four different local search methods separately.
1) Cross Flight: The basic idea of Cross Flight method

comes from [4], we expand this method to multiple victims and
3D scenario. The whole process is shown in Figure 2, Once
the victim signal is received, the drone enters the Cross Flight
local search, records the position h1 at this time, and flies
forward until the victim signal is lost, and the disappearance
position is recorded as h2. Then the drone flies backwards to
the midpoint between h1 and h2, turns 90◦, repeats the above
process, records the disappearance positions of the two victim
signals in the vertical direction as v1 and v2, and records the
midpoint of v1 and v2 as pc. pc must be the projected point
of victim pv on the drone plane. h1, h2, v1, v2 must be on
the sphere with the victim position pv as the center, and these
four points are on the circle with pc as the center of the circle
and ~nc as the normal vector. Since the victim plane is known,
based on a certain point pp on the plane and its normal vector
~np, the intersection of the line ~nc and the victim plane can
be calculated as the victim’s position.

Fig. 2. Cross Flight

t =
~np(pp − pc)
~np · ~nc

(5)

pv = pc + ~nct (6)

It can also be seen from the Figure 2 that for the Cross Flight
method, in the extreme case, wg = 2r = 40m, in practice, we



choose wg = 35m to cover a larger search area as much as
possible, and reduce the possibility of missing victim signal.

2) Iterative Cross Flight (ICF): After the local search, the
distance error could be not low enough due to the heavy noise.
Therefore, it is necessary to further take a step to gradually
reduce the error to a certain level through an iterative method.
Here we use the intensity received at the victim position as
the criterion to decide whether to let the drone enter Iterative
Cross Flight.

As shown in the Figure 3, there are two unit vectors
−→
e1 and−→

e2 on the drone plane, which are the movement directions
of the drone during Cross Flight and Iterative Cross Flight.
After the Cross Flight, if the intensity received at the victim
location is not higher than the threshold, the drone will fly
from the victim position to the midpoint pc in the drone flight
plane. Next, instead of continuing the global search, it will
repeat the Cross Flight in this plane. In the Figure 3, v1 and
v2 are the boundary points in Cross Flight and v3 and v4
are the boundary points in the first iterative search. Unlike
the normal Cross Flight, the criterion for judging whether
the drone should stop is no longer an intensity of zero, but
an appropriate threshold. This threshold increases with the
number of iterations. This allows the drone to perform local
search in a smaller area, thereby improving the accuracy of
the results.

Fig. 3. Iterative Cross Flight

3) Iterative Local Search (ILS): The idea of the Iterative
Local Search algorithm is to navigate the drone gradually
to the victim. Preferably, the drone should take large steps
towards a victim when far away and small steps, otherwise.
Hence, we exploit the intensity of the sensor model described
in III to influence the step size in each iteration.

One solution is to exploit the direction and the magnitude
of the intensity observed by the sensor model. In (7) we see
an iterative local search method with an adaptive step size
assuming a sensor model discussed in III-B.

~xt+1 = ~xt + α ∗ rt
it
∗ d̂t (7)

Here, ~xt+1 is the next state at timestamp t + 1 and ~xt is
the current state at timestamp t and d̂t is computed using
Equation (4), rt

it
is the adaptive step size, and α is a scaling

factor. We found out that α = 0.5 prevents the drone from
overshooting or oscillating. The step size depends on the range
rt and the intensity it. It decreases if the drone approaches

a victim because the intensity increases. It also prevents the
drone to take big steps as this could lead to overshooting or
oscillating behaviour. On the other hand, if the drone is far
away from a victim the step size is large because the intensity
is low. Hence, the drone is taking big steps towards a victim
and preventing a slow convergence. The algorithm terminates
when ‖~xt+1 − ~xt‖2 ≤ 0.1.

For an attempt to devise an approach without taking advan-
tage of the direction see in Appendix A..

Fig. 4. Triangulation

4) Triangulation: Different from the above three methods,
triangulation only records the position where the drone receive
or lose the victim’s signal during the global search process,
which are denoted as marginal points mi. After covering all
area, the drone calculates the position of all victims and returns
to rescue. Since the marginal points of all victims are mixed
together, we need to find out the correspondence between each
victim and its marginal points. We perform two screenings, as
shown in Figure 4. First, the midpoint of a victim’s marginal
points in the x-coordinate must be the same as the victim’s
x-coordinate

vx =
1

2
(m1x +m2x) =

1

2
(m3x +m4x) (8)

After screening candidates, given the grid width wg , we
conduct a second screening: The candidates must be on the
victim-centred circle:

(vx −m1x)2 + w1
2 = (vx −m3x)2 + w2

2 (9)

w1 + w2 = wg (10)

Through the above two screenings, we can determine all pairs
of marginal points belonging to the same victim and calculate
the victim’s position, but it should be noted that this point is
actually the projection point of the victim’s position on the
drone plane. In the same way as in the previous methods,
given drone plane and victim plane, we can calculate the real
victim position from this projection point.

After locating the victims, the drone visits corresponding
points and records the signal intensity at each point. This step
works as verification and rescuing. If it is larger than a given
threshold, we assume the victim is actually located here and is
rescued. To reduce the influence of the signal’s noise, we can
set the grid width wg as smaller values, which leads to more
measurements for each victim and more accurate results.



V. PATH PLANNER AND CONTROLLER

A. Potential Field

In this work, we try to use potential field to navigate the
drone to the victim after locating the victim. Regardless of
obstacles, we only need to build an attraction field centered
on the target location

Ut =
1

2
ζ(~xgoal − ~xt)2 (11)

The position update depends on the attractive force, which
is the derivative of the potential energy field.

~xt+1 = ~xt +∇Ut (12)

∇Ut = ζ(~xgoal − ~xt) (13)

The planner terminates when ‖~xt+1 − ~xt‖2 ≤ 0.5.

B. Trajectory Generation

Since we don’t need to consider obstacles, all trajectories
can run in a straight line, so we use a simple trajectory
planner to fly to the target point in a straight line at a given
speed. Based on the velocity and kinematic equations, we
can calculate the desired state of the drone for each step and
pass it to the controller. When approaching the target, we use
recursive judgment of the distance, and when the distance from
the target point increases, we replan the trajectory to prevent
overshoot.

C. Geometric Tracking Controller

We use a geometric tracking controller [7] that is designed
so that the position tracking error converges to zero when there
is no attitude tracking error, and it is properly adjusted for non-
zero attitude tracking errors to achieve asymptotic stability of
the complete dynamics. This controller can achieve almost-
global convergence for the drone.

TABLE I
COMPARSION BETWEEN DIFFERENT LOCAL SEARCH METHODS

method without direction with direction
Cross Flight ICF Triangulation Dir. ILS

Error (m) 0.33 0.22 0.47 0.36
Area (m2) 415*300 415*300 415*300 415*300
Time (s) 733 796 864 702

Effi. (m2/s) 186 172 158.5 195
HA 94 99 92 100
LA 5 0 8 0

Failure 1 1 0 0

VI. EXPERIMENTS AND RESULTS

We compare the efficiency, accuracy and robustness of the
different search methods described above. In order to ensure
the fastest rescue speed, we stipulate that the speed of global
search vg is 8m/s. After locating the victim, the speed of
flying to the victim vl is 5m/s. We do not hover near the
victim to reduce time waste. We use the victim coverage area
divided by the rescue time to represent the efficiency metrics
of rescue (denoted as Effi. in the table). For accuracy and

robustness, we define that there are ten victims in each rescue,
and classify the rescue performance with different errors: the
distance error less than 1m is highly accurate, the distance
error between 1 − 5m is low accurate (denoted as HA and
LA in the table), and higher than 5m means the search fails.
We perform ten rescues per method using randomly generated
victim locations, i.e. a total of 100 victims, and record the
average distance error, total rescue time, covered area, and the
number of different cases. The experiment results are shown
in Table I.

From the comparison we can see that between methods
without direction, ICF further iterates on the already high
accuracy of Cross Flight and thus achieves the highest ac-
curacy. However, these two methods are less robust, which
is related to the fact that these two methods need to fly
repeatedly to accept the victim’s noisy signal. Especially when
the victim is at the edge of the transceiver’s working range,
weak signal and repeated flight are likely to cause the method
to fail. Triangulation consumes the most time due to the need
for shorter grid width and increased flight distance. Further
comparison between Cross Flight and triangulation can be seen
in Appendix C.

We list the directed ILS separately, because it has direction
as more conditions. We can see that with direction, after
receiving the signal, this method can fly directly to the victim,
saving time and reducing the possibility of interference by
noise. The design of adaptive size also reduces the occurrence
of overshoot and oscillation, and has strong robustness.

Compared with human, the flight speed of a drone at 8m/s
is about 4 times that of the human walking speed, and the
search for an area of about 120,000 square meters can be
completed in about 12 minutes, especially after having the
direction information, the drone can directly fly to the victim,
which greatly saves time and effectively increases the victim’s
chance of survival.

VII. CONCLUSIONS

UAV has great application potential in avalanche rescue.
In this project, we use different methods to achieve accurate
and rapid positioning and rescue of victims in avalanche
scenes. We compare the efficiency, accuracy and robustness of
different methods. The results show that iterative methods with
more sensor information have higher efficiency and robustness.
Under the condition of less sensor information, the traditional
geometric method has higher accuracy. The search method
can further improved by exploring field-based direct search
methods. At the same time, the coverage efficiency of UAVs
has been proved to be much higher than that of humans, which
provides a simulation basis for future practical applications.
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APPENDIX A
UNDIRECTED ILS

In Equation (14) we see our first attempt to devise a state
update equation.

~xt+1 = ~xt + I ∗∆~x (14)

I = tanh(∆i) where ∆i = it − it−1 is the difference of
previous and current intensity. This term influence the forward
and backward movement. Further, ∆~x = ~xt − ~xt−1 is the
difference of the previous and current state of the drone and
acts as an step size.

The idea behind this update rule is that the drone will
keep flying in the direction when the argument of the tangens
hyperbolicus is greater than zero. This happens when the
difference of the intensity ∆i is greater than zero. If the
difference of the intensity ∆i is smaller than zero, the drone
will fly in the opposite direction (see Figure 5). Lastly, we
multiply the difference of the state of the drone ∆~x in order to
prevent large steps which leads to overshooting or oscillating.
As in IV-B3 the algorithm terminates when ‖~xt+1−~xt‖ ≤ 0.1.

However this approach has a downside. Imagine the drone
is flying along the x-axis so that there is no change in
y-direction of the state. This leads to ∆y = 0 and yt will stay
the same for every iteration in the update rule (14).

I = tanh ∆i

−2 −1 1 2

−1

1

∆i

I

Fig. 5. The difference of the current and previous intensity passed to tangens
hyperbolicus function.

APPENDIX B
FIGURES

Fig. 6. An antenna with 6 end points directed in positive x, y, z and negative
x, y and z.



APPENDIX C
CROSS FLIGHT AND TRIANGULATION

Cross Flight, ICF and Dir. ILS interrupt global search and
enter local search when receiving victim signal. However,
in triangulation victims are localized after the drone cover
the whole area. Results of Cross Flight and triangulation tell
advantages of each method. For large area with few victims,
Cross Flight achieves less time. This comes from larger grid
width.

Fig. 7. To receive signal, grid width for Cross Flight should be no larger
than the diameter. However, triangulation needs at least 4 marginal points for
localization. The maximal grid width is the radius. Cross Flight needs about
half fly-overs of triangulation.

Whereas, triangulation is more competitive as victims in-
crease in the same area due to a different rescuing strategy.
Local search time increases obviously for Cross Flight, while
total time of triangulation only increases slightly. This comes
from more calculation time and more victims to finally go
through.

TABLE II
COMPARISON BETWEEN CROSS FLIGHT AND TRIANGULATION

10 victims 15 victims 20 victims 25 victims
Time of Cross Flight [s] 194 307 409 521
Time of triangulation [s] 277 326 380 445

The test area is 144*300 m2. From 20 victims triangulation
overtakes Cross Flight with less time.


